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An effective temperature Teff which differs from the bath temperature is believed to play an essential role in
the theory of elastoplasticity of amorphous solids. Here, we introduce a natural definition of Teff appearing
naturally in a Boltzmann-like distribution of measurable structural features without recourse to any question-
able assumption. The value of Teff is connected, using theory and scaling concepts, to the flow stress and the
mean energy that characterize the elastoplastic flow.
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Amorphous solids form when supercooled liquids are fur-
ther cooled below the glass transition. While indistinguish-
able in their microscopic disorder from fluids, amorphous
solids exhibit, in contradistinction from fluids, a yield stress
below which they respond elastically to external strains; flu-
ids flow under any external strain. Once the amorphous solid
is subjected to large enough strains such that the response of
the internal stress exceeds the yield stress, it can flow plas-
tically in a manner that depends on the temperature, the shear
rate, the density, etc. While there have been many attempts to
present phenomenological equations to describe the rheology
and the constitutive relations of such elastoplastic flows,1–7

to this date none of these attempts have gained universal
acceptance. In fact, there is no complete agreement even on
the field variables or “order parameters” which are necessary
to close a complete set of equations.

Among the more interesting ideas for order parameters
stands the proposition that such elastoplastic flows exhibit
two different temperatures: the regular temperature T that
relates to the mean velocity of the particles forming the
amorphous solid �and, naturally, to the heat bath to which the
system is coupled� and an “effective temperature” Teff that
has to do with some “noise”8 or “compositional properties”
of the material.9 The concept of effective temperature was
originally formulated in Ref. 10 in order to describe the mac-
roscopic properties of granular matter. Although these sys-
tems are athermal in the sense that they cannot evolve under
normal temperature conditions, they may be driven by an
external force which establishes an equilibrium-like behavior
described by an effective temperature related to the intensity
of the “tapping.” These ideas have since been applied in
other kinds of mechanically driven systems such as disor-
dered elastic structures.6,9,11–15 The aim of this Rapid Com-
munication is to describe a simulational discovery of very
sharp and direct meaning to an effective temperature in a
number of simple computer models of elastoplasticity. This
effective temperature has an obvious connection to the com-
positional disorder in the material. Moreover, it naturally
identifies with the regular equilibrium temperature in the su-
percooled liquids. In this way it allows a smooth description
that unites the supercooled regime with the amorphous-solid
regime, something that is certainly lacking in many phenom-
enological descriptions. To define Teff we need first to recall
some recent advances in describing the supercooled equilib-
rium regime.

Upscaling in the supercooled regime. In a series of recent
papers �cf. Ref. 16 and in particular Ref. 17� it was proposed
that the scenario of the glass transition, including the aston-
ishingly rapid slowing down of the dynamics in a short range
of temperatures, is usefully encoded by the temperature de-
pendence of the concentrations of a finite set of quasispecies
which can be indexed by 1,2 , . . . ,n. The precise nature of
these quasispecies may change from model to model, but
they are always formed by particles and their nearest neigh-
bors. The main advantage of these quasispecies is that they
obey a discrete statistical mechanics, in the sense that their
temperature-dependent concentrations �Ci��T� are deter-
mined by a set of degeneracies gi and enthalpies Hi such that

�Ci��T� =
gie

−Hi/kBT

�
i=1

n

gie
−Hi/kBT

. �1�

Obviously, if such a simple description is available, we
can predict which quasispecies will be there when the tem-
perature is high, and which will remain when the
temperature decreases: only those with lowest free energy
Fi�Hi−kBT ln gi remain at low temperatures. Indeed, simu-
lations show how the concentrations of some quasispecies
decrease, some increase, and some start increasing and then
decrease when temperature is lowered according to their de-
generacy and enthalpy. Fluidity �or short relaxation times� is
therefore correlated with high concentrations of quasispecies
whose free energy is high, and solidity �or long relaxation
times� is correlated with high concentrations of quasispecies
whose free energy is low. This qualitative observation was
made quantitative by noting the concentrations of those qua-
sispecies that tend to disappear when the temperature is low-
ered and summing these concentrations to what was called
the “liquid-like” concentration �C���T�. The inverse of this
concentration provides a length scale �the typical distance
between “fluid” quasispecies�,

��T� � ��C���T��−1/d, � → � when T → 0, �2�

where d is the space dimension. It was amply demonstrated
on a large variety of models that the relaxation time ���T�
measured using correlation functions in the supercooled re-
gime is determined by this diverging scale according to
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�� = �0e���T�/T, �3�

where � is a typical free energy per particle and �0 is a
microscopic �cage� time. In contradistinction with the Vogel-
Fulcher and Adam-Gibbs fits, Eqs. �2� and �3� imply that
there is no singularity associated with the glass transition at
any temperature other than T=0, as was explained in Ref. 18.
The simulational observation that we announce here is that
the crucial statistical-mechanical relation �1� can remain cor-
rect and very useful, with T being replaced with Teff, also in
the nonequilibrium elastoplastic regime of the amorphous
solids that form at ultralow bath temperatures. In other
words, Teff exists for systems under strain and it determines
the compositional disorder of the material.

Two models. We present the findings using two different
models of glass formation in two dimensions: the first is the
Shintani-Tanaka model19 and the second is the so-called
“hump model” which was inspired by Ref. 20 and analyzed
in Ref. 17. The Shintani-Tanaka model has N identical par-
ticles of mass m; each of the particles carries a unit vector ui
that can rotate on the unit circle. The particles interact via the

potential U�rij ,�i ,� j�= Ū�rij�+�U�rij ,�i ,� j�. Here, Ū�rij� is
the standard isotropic Lennard-Jones 12-6 potential, whereas
the anisotropic part �U�rij ,�i ,� j� is chosen such as to favor
local organization of the unit vectors in a fivefold symmetry
to frustrate crystallization. For full details of this model the
reader is referred to Refs. 19, 21, and 22; here it suffices to
know that with the parameters chosen in Ref. 19 the model
crystallizes upon cooling for ��0.6, whereas for larger val-
ues of � the model exhibits all the standard features of the
glass transition, including a spectacular slowing down of the
decay of the correlation functions of the unit vectors
CR�t���1 /N��i�ui�t� ·ui�0��, which is very well described by
Eq. �3�.

The hump model again employs N identical particles in-
teracting via a potential that is constructed as a piecewise
function consisting of the repulsive part of a standard 12-6
Lennard-Jones potential connected at r0=21/6	 to a polyno-
mial interaction P�x�=�iaix

i. ai’s are tuned17 so that P�x�
displays a peak at r=rhump and also such that there is a
smooth continuity �up to second derivatives� with the
Lennard-Jones interaction at U�r0�=
h0 as well as with the
cutoff interaction range U�r��=0. The interaction potential
for the hump model is shown in Fig. 1. Note that the two
typical distances that are defined by this potential, i.e., the
distance at the minimum rmin and the cutoff scale r�, appear
explicitly in the amorphous arrangement of the particles in
the supercooled liquid, as shown in the inset in Fig. 1. The
model has two crystalline ground states: one at high pressure
with a hexagonal lattice and a lattice constant of the order of
rmin. At low pressure the ground state is a more open struc-
ture in which the distance r� appears periodically. At inter-
mediate pressures the system fails to crystallize and forms a
glass upon cooling.17

Simulations of the elastoplastic regime. The molecular-
dynamics protocol we implemented for both models is the
same. First, we carefully equilibrated a large number of in-
dependent configurations with N particles �N is varied in
these simulations between 1024 and 6400� in the NVT en-

semble using the Berendsen thermostat over a wide range of
temperatures. These samples were then used to determine the
enthalpies and degeneracies for the two models as described
in detail in Ref. 17. These measured parameters predict ac-
curately the concentrations of quasispecies at any given tem-
perature as well as the �� relaxation time. After this, we
turned our equilibrium supercooled liquids into amorphous
solids by minimizing their potential energy �conjugate gradi-
ent algorithm�, allowing us to sample a representative set of
metastable minima. This procedure can be thought of as
quenching a liquid infinitely fast into a disordered solid
whose temperature is formally T=0. At this point we bring
the particle velocities, using a short NVT run, to a value
consistent with a desired bath temperature Tb. Then we force
the system at a constant strain rate �̇ using the SLLOD algo-
rithm combined with Lees-Edwards boundary conditions.
Examples of typical stress-strain curves obtained for the
hump model at different bath temperatures are shown in the
lower left panel in Fig. 2. After the usual elastic response, an
irreversible plastic flow begins, eventually generating a time-
independent steady plastic flow in which all the thermody-
namic quantities �such as the flow stress or energy� reached a
value independent of the initial quenched configurations. The
major finding is that throughout the evolution the concentra-
tions of quasispecies obey Eq. �1� with the equilibrium mea-
sured values of gi and Hi, but with Tb being replaced with
Teff, which is a function of Tb and �̇ �see, for example, the
upper panels in Fig. 2�. It is remarkable that there is an
equally well-defined effective temperature not only in the
steady state but also in the transient regime �see the lower
right panel in Fig. 2�. The steady-state values of Teff as a
function of Tb are shown for various values of �̇ in Fig. 3.
Note that at high temperatures Teff→Tb, whereas Teff in-
creases when Tb→0, increasing the fluidity of the system.

The relevance and importance of the steady-state effective
temperature can be demonstrated by relating it to the mean
energy and the flow stress, with the latter being the mean
stress in the elastoplastic steady state. The mean energy per
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FIG. 1. �Color online� The pairwise potential for the hump
model. In the inset we show a snapshot of the position of the point
particles �the circles represent the finite range of interaction; cf. Ref.
17�.
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particle U /N was directly measured in the steady state of the
hump model and compared to the theoretical prediction

U

N
=

0.835

2 �
i

�Ci��Teff�i + kBTb +
	�

2 �Tb�V
2�N

, �4�

where the first two terms were taken from the equilibrium
theory for the hump model in Ref. 17, but with Teff replacing
Tb in determining the concentrations of the quasispecies; the
last term is the elastic energy per particle stored in the steady

state. The almost perfect agreement between the theoretical
expectation based on Teff and the direct measurement is dem-
onstrated in Fig. 4.

The dependence of the flow stress on Tb for various val-
ues of �̇ is shown in Fig. 5. We show now that we can predict
the values of the flow stress 	��Tb , �̇� given the data for
Teff�Tb , �̇� or, vice versa, predict Teff�Tb , �̇� from the knowl-
edge of 	��Tb , �̇�. To this aim we invoke scaling concepts
and propose a scaling form for 	��Tb ,Teff� such that the �̇
dependence is carried here by Teff,

	��Tb,Teff� =
�

m
kBTbf	Teff

Tb

 , �5�

where � and m are the density and the molecular weight of
the particles. The function f�x� is a dimensionless scaling
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FIG. 2. �Color online� Upper panels: test of the Boltzmann-like
distribution of the concentrations of quasispecies out of equilibrium
using Teff for the Shintani-Tanaka �left� and the hump �right� mod-
els. The degeneracies gi and enthalpies Hi were taken from equi-
librium simulations, but the concentrations Ci pertain here to elas-
toplastic steady states. Left lower panel: representative stress-strain
curves for the hump model for different bath temperatures, color
coded as in the right panel. Lower right panel: trajectories of Teff for
the hump model as a function time for a fixed strain rate �̇=10−4

and N=6400, settling at the steady state either from above or from
below.
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FIG. 3. �Color online� Symbols: Teff as a function of Tb for the
hump model at three values of the strain rate. Lines: prediction of
Teff using Eq. �5�. Inset: Teff as a function of Tb for the Shintani-
Tanaka model at the two higher values of the strain rate. Straight
lines indicate where Teff=Tb.
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FIG. 4. �Color online� Energy per particle in the elastoplastic
steady state as a function of the bath temperature. Symbols: simu-
lation results. Lines through the symbols: theoretical prediction us-
ing Eq. �4�. Black lines: equilibrium energy per particle.
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FIG. 5. �Color online� Flow stress as a function of Tb for the
indicated values of the strain rate �̇ for the hump model, and in the
inset for the Shintani-Tanaka model for the two higher values of the
strain rate.
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function that must obey f�1�=0 to agree with the observed
fact that at higher temperatures where Teff=Tb the flow stress
approaches zero. For T→0 or x→� we observed that 	�

becomes proportional to Teff requiring f�x�→Cx for
x→�. The simplest function that obeys these limits is
f�x�=C�x−1�. A test of the predicted data collapse is shown

in Fig. 6 where the continuous line is the function
4.93�x−1�. Having the scaling function at hand we can pre-
dict the data, say of Teff�Tb , �̇�, from the knowledge of
	��Tb , �̇�, or vice versa. Using for example the data for 	�

for the hump model in Fig. 5 and the scaling function
f�x�=4.93�x−1�, we solve for Teff�Tb , �̇�. The results are
demonstrated in Fig. 3 with the curved lines going through
the data. We conclude that the procedure is in satisfactory
agreement with the data, demonstrating the importance of the
concept of effective temperature. We mention in passing that
the temperature T� where Teff separates from Tb can be easily
predicted by equating the relaxation rate ��(��T�) with �̇−1:
T����T�� � ln �0�̇. At temperatures higher than T� the natu-
ral relaxation time �� is the shorter of the two, whereas at
temperatures lower than the minimum the shear rate deter-
mines the rate of relaxation.

Much remains to be done. For example, in the case of the
standard model of binary mixtures we did not find a satisfac-
tory upscaling that remains the same in and out of equilib-
rium. This and other riddles concerning the present approach
will be dealt with in a future publication. Nevertheless, we
believe that the present findings will provide grounds for
future research.
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FIG. 6. �Color online� Double-logarithmic test of the scaling
function �5�; all of the data from Figs. 3 and 5 are replotted here for
both models �with the Shintani-Tanaka model in the inset� to dem-
onstrate the excellent data collapse. The continuous line is the func-
tion f�x�=4.93�x−1�.
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